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Interpretability logic

» Intepretability logics have a binary modal operator .
» Basic interpretability logic IL:
classically valid formulas (in the new language, O, <, >);
K o(A - B) -» (A - OB);
Lob O(DA — A) - 0OA;
J1 o(A - B)—> A B;
J2 (A>B) A (B>-C)—> A>C;
JB3 (A>C) A (BC)—>AVB®>C;
J4 A>B — (0A = OB);
J5 A A.
» rules: modus ponens and necessitation A/OA.

(parentheses priority: =, 0, 0; A, V; >; —, <)



Models

» Semantics: extend the usual relational (Kripke) model.
Veltman model: M = (W, R,{Sy : we W}, V), where:
1. W=#0;
2. R~ 'is well-founded (no xoRx; Rx2R ... chains);
3. R s transitive;
4. S, C R(w)? is reflexive, transitive, contains R N R(w)?
(wRuRv implies uSyv);
5. V: Prop —» P(W).

Truth of a formula F > G (“F interprets G”) in a world w € M:

v

v

wi-rF>G & VYxeR(w): xrF=3yeSy(x): yrG.

\4

IL-frame (Veltman frame) is a triple
F =(W,R,{Syw : we W}).
We have:

v

IL-F © VYF: FEF.



Frame conditions

» Some extensions of IL:

ILM, IL+A>B—->OAAOC>BAOC
ILW IL+A>B—->A>BADO-A
IiLw IL+A>-B—->BAoC>BAOCADO-A

» ILW* = ILMyW C IL(All)
» These logics are complete w.r.t. certain classes of frames:
(My)  wRuRxS,v = R(v) € R(u);

(W)  Sw o R is reverse well-founded for each w;
(W) (M) and (W).

» ILW-frame is IL-frame that satisfies (W) etc.



Proving decidability

v

Let’s focus on IL.

FMP: if x - F, then there is finite M and x" € M s.t. X" F.
Decision procedure: simultaneously do two things:

» Enumerate the (countable) set of all IL-proofs.
» Enumerate the (countable) set of (descriptions of) finite
IL-models.

v

v

v

The usual way of proving FMP is by filtrations.



Filtrations on IL-models

» Let [ contain A, closed under subformulas.

» Assume ~ is an equivalence relation on W, ~C=r.

» For any V C W, define V= {[v]IveV}

» We define the rest of M as follows.

» R ={([w],[u]) | wRu,30C € T : w ¥ OC, u + OC}.

> [u]§[W][v] if and only if [u], [v] € R([w]), and for all/some
w’ € [w] and some u’ € [u] such that w’Ru” we have u’S,, v’
for some v/ ~ v.

» Define I so that x and [x] agree on variables in I'.
» We'll write R, S instead of R, S when context allows.

» Problem: we lose transitivity of Sy}
W — {U~ vy ~ Vo w Z}, (W] = {[u] w [v] » [2]}



Filtrations on IL-models (2)

» Let I contain A, closed under subformulas (and some more
technical conditions).

» Assume ~ is an equivalence relation on W, ~C=r.

» For any V Cc W, define V= {[v]IveV}

» We define the rest of M as follows.

» R={([w].[u]) |wRu,30C €T : w ¥ 0C, u * OC}.

> [u]§[W][v] if and only if [u], [v] € R([w]), and for some/all
w’ € [w] and all v’ € [u] such that w’Ru’ we have 'S, v’ for
some v’ ~ v.

» Define I so that x and [x] agree on variables in I'.
» We'll write R, S instead of R, S when context allows.

» Problem: we lose S,,-successors that don’t agree enough.
W — {V1[X] e Ur ~ Uz w Vo[- X]},
W] = {[u] w7}



Generalized models

» In the last example, ideally [u] ~> {vy, va}.

» Generalized IL-models (generalized Veltman models).
» M=(W,R,{S, : we W}, V), where:
1. W=+0;
2. R~ 'is well-founded (no xoRx1Rx2R ... chains);
3. Ris transitive;
4. S, C R(w) x (28 \ {0}) is:
» quasi-reflexive  uS,{u};
» quasi-transitive  uS,{v;|ie€ l}and v;S,Z; = uS, U{Z | i€ l};
» contains RN R(w)®> wRuRv implies uS,{v};
» is monotonous uS,V = uS,V,VcV

5. V: Prop — P(W).
» Truth of a formula F > G (“F interprets G”) in a world x € M:

wiF>G :© ¥YxeR(w): xrF=3VeS,(x): VI G.

» Vi Gstandsforvir Gforallve V.



Filtration property

> I\~ﬂ = (W, ﬁ, §[W], II—).

W:{[w] | we W)

R = {([w],[u]) | wRu,30C €T : w ¥ 0C, u - 0C}.

[u] Sy V if and only if {[u]}, V € R([w]), and for all w’ € [w]
and all U/,SJ[U] such that w’Ru” we have u'S, V(w’, u’) for
some V(w’,u’) C V.

Forcing relation compatible with M.

v

v

v

v

» w = {{v[X]} v ug ~ vz~ {v2[- X},

[w] — {[u] > {[w1], [va]}}
» Assume (W, R, S, k) is a generalized model (depends on ~).
» Dowehave w - F < [w]F F?



» Denote [A]y = {x € R[w] | x I A}.

Lemma
Letw ¥ A > B. There is a maximal u € [A], such that

uS,V = V¥ B.

We also have u ¥ GA, B.

Proof.

Existence: definition of . Maximality: R is conversely
well-founded. Since uS,{u}, obviously u ¥ B. Suppose u I GA.
Then uRv I A. Since uS,{v}, by quasi-transitivity we have
Sw(v) € Sy(u). Contradiction with maximality of u.



Theorem

wikF — [w]rF.

Proof.
Induction on F.
& Assume w ¥ A > B. Lemma: there is a maximal u € [A]w
such that uSyV = V ¥ B; and u ¥ OA.
We have w I ©A, and since u ¥ A, [w]R[u].
Let V arbitrary s.t. [u]S[W]V In particular, uSy, V’ for some
V' C V. Since V' ¥ B, by IH, V' ¥ B. Therefore V ¥ B.



Theorem

wikF < [w]rF.

Proof.
Induction on F.

= Assume w I- A > B. Assume [w]R[u]  A. We construct V s.t.
[W]R[u]Sw V + B.
Let w’ € [w], v € [u], wRu. Since w’ ~ w, w’ I A > B,
therefore for some V(w’,u’), u'Sy V(w’,U") I+ B.
For each point v e V(w’,u"), put Z, = {v}if v ¥ OB.
Otherwise, Z, = {m}, where m is arbitrary maximal world from
[B]v- Now, u’'SwZy, so by quasi-transitivity, vSy, |, Z, I- 0-B.
Put V := UW’G[W],U’E[u],w/Fi’u’,veV(W’,u/) Zy. By IH, V + B,0-B.
It remains to show that V ¢ R([w]). This requires
3C:oCeT,[w]¥oC,V roC. Take C = -B.



v

v

v

v

So, if (W, ﬁ, §, I-) is a model at all, then it is a filtration of
M=(W,R,S,I).

Is it a model (does it satisfy quasi-transitivity etc.)? Depends
on what ~ is.

Ideally, x and [x] are structurally similar, so that
quasi-transitivity etc. is preserved.

So, each y ~ x should be structurally similar to x.



Definition
A bisimulation between generalized IL-models
(W,R,{Sy : we W}ir)yand (W', R, {S/, : w € W}, Ir) is any
ZCWx W, Z=+0:
(at) if wzZw’ thenw I p & W’ I p;
(forth) if wZw’ and wRu, then there exists v’ € R’(w’) with uzZu’
and forall V' € S/ ,(u") there is V € Sy, (u) such that for all
v € V thereis v/ € V' with vZv’;

(back) if wZw” and w’R’U’, then there exists u € R(w) such that
uZu’ and for all V € Sy, (u) there is V' € S/, (u’) such that for
all v’ € V' there is v € V with vZv’.

» By induction on F, if x and y are bisimilar (w.r.t. any
bisimulation), x + F < y I F.

» Union of bisimulations (over generalized models) is itself a
bisimulation (Vrgo¢ and Vukovi¢, 2010).

» In particular, there is a largest (auto)bisimulation Z ¢ W2.



» Denote by ~ the largest bisimulation on W?2.
(equivalently, denote x ~ y if there is any bisimulation at all
which equates x and y)

Theorem
(W, ﬁ, §, IF) is a model.

Proof.

We should check: (1) W # 0, (2) R~ is well-founded, (3) R is
transitive, (4) S[W] c R([w]) x (2R \ (9}) (5) is quasi-reflexive
[u]S[W]{[u] 6) quasi-transitive [u]S[W] [vi] | i€ I} and

[VilSwZ: = [u]Siw ULZi | i € I}, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sjw;{[v]}, (8) is monotonous

[U]S[W] V= [U] S[W] vi,vcVv



Proof.

We should check: (1) W # 0, (2) R~ is well-founded, (3) R is
transitive, (4 ) S[W] c R([w]) x 2R (5) is quasi-reflexive
[u]S[W] [u]}, (B) quasi-transitive [u]S[W] [vi] | i€ I} and
[VilSwZ = [u]S[W] UtZ; | i € I, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sjw{[v]}, (8) is monotonous

[U]S[W] V= [y S[W] V,vVcVv.



Proof.

We should check: (1) W £ 0, (2) R~ is well-founded, (3) R is
transitive, (4 ) g[w] c R([w]) x 2R (5) is quasi-reflexive

[u]S[W] [u]}, (B) quasi-transitive [u]S[W] [vi] | i€ I} and

[VilSwZ = [u]S[W] UtZ; | i € I, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sjw{[v]}, (8) is monotonous

[U]S[W] V= [y S[W] V,vVcVv.

(8). Assume [w]|R[u]R][v]. Then (w.l.o.g.) wRu ~ u’Rv. Now (back)
implies there is v € R(u), v/ ~ v. So wRuRV’, thus wRVv’. Since
[w]R[u], thereis A s.t. w ¥ O-A, u - O-A. So, also v’ I O0—-A. But
then [w]R[v’]. Since v’ ~ v, [W]|R]v].



Proof.

We should check: (1) W # 0, (2) R~ is well-founded, (3) R is
transitive, (4 ) S[W] c R([w]) x 2R (5) is quasi-reflexive

[u]S[W] [u]}, (B) quasi-transitive [u]S[W] [vi] | i€ I} and

[VilSwZ = [u]S[W] UtZ; | i € I, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sw{[v]}, (8) is monotonous

[U]§[W] V= [U]§[W] V,vVcVv.

(8). Assume [w]|R[u]R][v]. Then (w.l.o.g.) wRu ~ u’Rv. Now (back)
implies there is v € R(u), v/ ~ v. So wRuRV’, thus wRVv’. Since
[w]R[u], thereis A s.t. w ¥ O-A, u - O-A. So, also v’ I O0—-A. But
then [w]R[v’]. Since v’ ~ v, [W]R]v].

(7) Assume [w]R[u]R[v]. We already know [w]R[u] and [w]R][v].
Let w’ ~ w,u” ~ u such that wRu’. Since u’ ~ u, (back) implies
there is v/ ~ v such that w’Ru’Rv’. So for arbitrary w’ ~ w,u’ ~ u
there is v/ s.t. U'Sy/{v’} and indeed [v] € {[v]}. O



» Thus, if ~ is the largest bisimulation on W?, then (W, ﬁ,g, I)
is a model, and a filtration.

We were trying to prove finite model property; is this a finite
model?

» Each R-transition eliminates at least one ¢-formula from I; so
height is finite.

» Still, branching factor might be infinite.



Definition

A n-bisimulation between IL-models (W, R,{S,, : w € W}, ) and

(W',R',{S,, : w € W}, ) is any sequence

Z,C---CZyC Wx W:

(at) if wZow’ thenw - p < W’ I p;

(forth) if wZ,w’ and wRu, then there exists v’ € R’(w’) with
uZ,-1u" andforall V' € S/, (u’) there is V € Sy, (u) such that
for all v € V there is v/ € V' with vZ,_{V/;

(back) if wzZ,w’ and w’R’U’, then there exists u € R(w) such that
uZ,-1u andforall V € Sy(u) thereis V' € S/ ,(u") such that
for all v/ € V'’ there is v € V with vZ,_{V’.

» Since height of M is bounded by ||, worlds are |['|-bisimilar iff
bisimilar.



» Put u=, vif uand v agree on all formulas with at most n
nested modalities.

» From now on, assume Prop := PropNT.

» Now there are only finitely many formulas of modal depth up
to |I'] (finitely many up to local equivalence).

» Denote Th, w the set of all formulas F with modal depth up to
[N and w I+ F.



Lemma

U~pV & U=p V.

Proof.

= Induction on F.

< Induction on n. Step: assume (forth) doesn’t hold.
Then there is u € R(w):

(YU ~pq u, U € R(w))@AV'(U') € Sw (U'))(YV € Sy (u))
Av(u, V) e V)(VV e V(U))v(U', V) #p-1 V.

Put Bv := Aw~,  uweR(w) Thn-1 v(u', V). Put

B := Aves,(u) ~Bv. Forall v ~ u, we have V'(u’) - B
(because v(U', V) #p_1 V').

Let A := Thy_1 u. Now w’ I A > B. Since w =, W/, then
w I A > B. Contradiction.



v

v

v

v

v

Denote N' = M.
Forx,y e Nywenowhave x ~y & X~y < X=VY.
There are obviously only finitely many worlds in M/ =r|.

Since =rj = ~r, N (that is, M) has only finitely many worlds.
Thus we have FMP for IL.



Extending to ILX

» To prove FMP, given ILX that is complete w.r.t. class of
Veltman frames that satisfy property C, we need to fill in the
following:

1. What is the (generalized) frame condition G of X?
2. Is ILX complete w.r.t. to the class of G-frames?
3. Does M have G if M has G?

» For popular choices of X (except for W, W*), 1 is known; and 2
usually reduces to completeness w.r.t. C (for each VM take
the natural GVM, i.e. uSyv = uSy{v}).



Logic ILM

v

ILMgislL+A>B — A AOC>BADOC.
Frame condition (Mp):

v

wRuRxS,,vRz = uRz.

v

Frame condition (Mo)gen:

wRuRxS, V = (V' € V)(uSwV’ & R(V’) € R(u)).

v

For each VM with (My), there is a natural GVM (for xSy y,

Remains to prove M preserves (Mo) gen-

v



Theorem
If M has property (Mo)gen, then M has property (Mo)gen-

Proof.

Let [W]R[U]R[X]S[W]V. Fix w’ € [w], v € [u]. By bisimilarity, there
is X’ ~ X, W’By’Rx’.

Since [x]Sjw V, there is V(w’, u’) such that x’S, V(w’, u") and
V(/\;VT,/U') C V. By (Mp), there is V/(w’, i) € V(w’, u’) such that
R(V'(w',u")) € R(V).

Choose such V'(w’,u’) for w’ € [w], " € [u]; V' = U V'(w', U').
To show [u] S}, V', it remains to show R(V’) € R([u]). Take

[v] € V" and any [z] € R([v]), w.l.o.g. we have vRz. By definition,
v~V eV (w,u)forsome v,w ~w,u ~ u. Since v ~ Vv, vVVRZ'
for some z’ ~ z. We had R(V’(w’,u")) € R(U').

So, z’ € R(U’). To show [z] € R([u]), there should be a formula C,
[u] - ©C, [z] ¥ ©C. Take such C from [v]R|z].

Since v ~ v/, v/ I ©C and R(V’(w’,u")) € R(U’), we have

u - <oC. O



Logic ILW

» ILWisIL+ A>B —» A> B AO-A.
» Frame condition (W):

Sw o R is reverse well-founded for each w
» Frame condition (W)gen?

(Yw e W)(VX € R(w))(VZ € S,,'(X),Z # 0)(Vz € 2)
(AV S X)(2SuV & (Vv € V)(R(v) N Z = 0)).

» (VZ C S;,'(X) is: for all Z such that for all z € Z, zS,,X)

» (Interestingly, equivalent after replacing (Vz € Z) with
(3z € Z); occasionally useful.)



Logic ILW*

» ILW*islL+A>B - BAOC> B AOC AO-A.

» ILW* = ILWMy.

» Frame condition (W*)gen?

» Each ILW*-frame is ILW-frame (ILWMg 2 ILW) and
ILMp-frame (ILWMq 2 ILMp).

» Conversely, if ¥ is both an ILW-frame and an ILMp-frame,
then it is an ILWMg-frame (induction on proof length).

» So, the frame condition is:

(W)gen and (Mo)gen-
» If ILW* ¥ F, there is a ILMg-, ILW-VM M, w € M, s.t. w ¥ F.
Then there is a natural GVM N with similar properties. Then
N is an ILMg-, ILW-GVM, and so an ILW*-GVM.



Complexity

v

Given X, what is comp. complexity of {F | ILX + F}?
Since GL C IL, at least PSPACE for any natural choice of X.
The only (?) known result: ILg is PSPACE-hard.

v

v

v

Our goals:

» IL is in PSPACE;
» ILWis in PSPACE.

(corollary: both are PSPACE-complete)

v



Complexity (2)

» Let F be any non-theorem of ILX. By completeness, there is
M, we Mst. wgF.
1. Show that M can be transformed to a certain model M’ with
some desirable properties:

» accessibility relation (R) is a tree;
> polynomial height;
» polynomial branching factor;
» S-relations should be “factorized”.

2. Show that there is an algorithm that verifies the existence of all
models with such properties. For ILW, do additional

(polynomially large) bookkeeping to ensure there are no
R o Sy-loops.
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