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Interpretability logic

I Intepretability logics have a binary modal operator B.
I Basic interpretability logic IL:

classically valid formulas (in the new language, �,^,B);
K �(A → B)→ (�A → �B);

Löb �(�A → A)→ �A ;
J1 �(A → B)→ A B B;
J2 (A B B) ∧ (B B C)→ A B C;
J3 (A B C) ∧ (B B C)→ A ∨ B B C;
J4 A B B → (^A → ^B);
J5 ^A B A .
I rules: modus ponens and necessitation A/�A .

(parentheses priority: ¬,�,^; ∧,∨; B; →,↔)



Models

I Semantics: extend the usual relational (Kripke) model.
I Veltman model: M = 〈W ,R , {Sw : w ∈ W },V〉, where:

1. W , ∅;
2. R−1 is well-founded (no x0Rx1Rx2R . . . chains);
3. R is transitive;
4. Sw ⊆ R(w)2 is reflexive, transitive, contains R ∩ R(w)2

(wRuRv implies uSwv);
5. V : Prop → P(W).

I Truth of a formula F B G (“F interprets G”) in a world w ∈ M:

w  F B G :⇔ ∀x ∈ R(w) : x  F ⇒ ∃y ∈ Sw(x) : y  G.

I IL-frame (Veltman frame) is a triple
F = 〈W ,R , {Sw : w ∈ W }〉.

I We have:
IL ` F ⇔ ∀F : F � F .



Frame conditions

I Some extensions of IL:
ILM0 IL + A B B → ^A ∧ �C B B ∧ �C
ILW IL + A B B → A B B ∧ �¬A

ILW∗ IL + A B B → B ∧ �C B B ∧ �C ∧ �¬A

I ILW∗ = ILM0W ⊆ IL(All)
I These logics are complete w.r.t. certain classes of frames:

(M0) wRuRxSwv ⇒ R(v) ⊆ R(u);
(W) Sw ◦ R is reverse well-founded for each w;

(W∗) (M0) and (W).

I ILW-frame is IL-frame that satisfies (W) etc.



Proving decidability

I Let’s focus on IL.
I FMP: if x  F , then there is finiteM and x′ ∈ M s.t. x′  F .
I Decision procedure: simultaneously do two things:

I Enumerate the (countable) set of all IL-proofs.
I Enumerate the (countable) set of (descriptions of) finite

IL-models.

I The usual way of proving FMP is by filtrations.



Filtrations on IL-models

I Let Γ contain A , closed under subformulas.
I Assume ∼ is an equivalence relation on W , ∼⊆≡Γ.
I For any V ⊆ W , define Ṽ = {[v] | v ∈ V}.
I We define the rest of M̃ as follows.
I R̃ = {([w], [u]) | wRu,∃�C ∈ Γ : w 1 �C , u  �C}.
I [u]S̃[w][v] if and only if [u], [v] ∈ R̃([w]), and for all/some

w′ ∈ [w] and some u′ ∈ [u] such that w′Ru′ we have u′Sw′v′

for some v′ ∼ v.
I Define  so that x and [x] agree on variables in Γ.
I We’ll write R, S instead of R̃, S̃ when context allows.
I Problem: we lose transitivity of S[w].

w → {u v1 ∼ v2  z}, [w]→ {[u] [v] [z]}



Filtrations on IL-models (2)

I Let Γ contain A , closed under subformulas (and some more
technical conditions).

I Assume ∼ is an equivalence relation on W , ∼⊆≡Γ.
I For any V ⊆ W , define Ṽ = {[v] | v ∈ V}.
I We define the rest of M̃ as follows.
I R̃ = {([w], [u]) | wRu,∃�C ∈ Γ : w 1 �C , u  �C}.
I [u]S̃[w][v] if and only if [u], [v] ∈ R̃([w]), and for some/all

w′ ∈ [w] and all u′ ∈ [u] such that w′Ru′ we have u′Sw′v′ for
some v′ ∼ v.

I Define  so that x and [x] agree on variables in Γ.
I We’ll write R, S instead of R̃, S̃ when context allows.
I Problem: we lose Sw -successors that don’t agree enough.

w → {v1[X ]f u1 ∼ u2  v2[¬X ]},
[w]→ {[u] ? }



Generalized models

I In the last example, ideally [u] {v1, v2}.
I Generalized IL-models (generalized Veltman models).
I M = 〈W ,R , {Sw : w ∈ W },V〉, where:

1. W , ∅;
2. R−1 is well-founded (no x0Rx1Rx2R . . . chains);
3. R is transitive;
4. Sw ⊆ R(w) × (2R(w) \ {∅}) is:

I quasi-reflexive uSw {u};
I quasi-transitive uSw {vi | i ∈ I} and viSwZi ⇒ uSw

⋃
{Zi | i ∈ I};

I contains R ∩ R(w)2 wRuRv implies uSw {v};
I is monotonous uSwV ⇒ uSwV ′,V ⊆ V ′

5. V : Prop → P(W).

I Truth of a formula F B G (“F interprets G”) in a world x ∈ M:

w  F B G :⇔ ∀x ∈ R(w) : x  F ⇒ ∃V ∈ Sw(x) : V  G.

I V  G stands for v  G for all v ∈ V .



Filtration property

I M̃ = 〈W̃ , R̃ , S̃[w],〉.

I W̃ = {[w] | w ∈ W }.
I R̃ = {([w], [u]) | wRu,∃�C ∈ Γ : w 1 �C , u  �C}.
I [u]S̃[w]Ṽ if and only if {[u]}, Ṽ ⊆ R([w]), and for all w′ ∈ [w]

and all u′ ∈ [u] such that w′Ru′ we have u′Sw′V(w′, u′) for
some ˜V(w′, u′) ⊆ Ṽ .

I Forcing relation compatible withM.
I w → {{v1[X ]}f u1 ∼ u2  {v2[¬X ]}},

[w]→ {[u] {[v1], [v2]}}

I Assume 〈W̃ , R̃ , S̃,〉 is a generalized model (depends on ∼).
I Do we have w  F ⇐⇒ [w]  F?



I Denote [A ]w = {x ∈ R[w] | x  A }.

Lemma

Let w 1 A B B. There is a maximal u ∈ [A ]w such that

uSwV ⇒ V 1 B .

We also have u 1 ^A ,B.

Proof.

Existence: definition of . Maximality: R is conversely
well-founded. Since uSw{u}, obviously u 1 B. Suppose u  ^A .
Then uRv  A . Since uSw{v}, by quasi-transitivity we have
Sw(v) ⊆ Sw(u). Contradiction with maximality of u. �



Theorem

w  F ⇐⇒ [w]  F.

Proof.

Induction on F .

⇐ Assume w 1 A B B. Lemma: there is a maximal u ∈ [A ]w
such that uSwV ⇒ V 1 B; and u 1 ^A .
We have w  ^A , and since u 1 ^A , [w]R[u].
Let Ṽ arbitrary s.t. [u]S[w]Ṽ . In particular, uSwV ′ for some
Ṽ ′ ⊆ Ṽ . Since V ′ 1 B, by IH, Ṽ ′ 1 B. Therefore Ṽ 1 B.

�



Theorem

w  F ⇐⇒ [w]  F.

Proof.

Induction on F .

⇒ Assume w  A B B. Assume [w]R[u]  A . We construct Ṽ s.t.
[w]R[u]S[w]Ṽ  B.
Let w′ ∈ [w], u′ ∈ [u],wRu. Since w′ ∼ w, w′  A B B,
therefore for some V(w′, u′), u′Sw′V(w′, u′)  B.
For each point v ∈ V(w′, u′), put Zv = {v} if v 1 ^B.
Otherwise, Zv = {m}, where m is arbitrary maximal world from
[B]v . Now, u′SwZv , so by quasi-transitivity, vSw

⋃
v Zv  �¬B.

Put V :=
⋃

w′∈[w],u′∈[u],w′Ru′,v∈V(w′,u′) Zv . By IH, Ṽ  B ,�¬B.
It remains to show that Ṽ ⊆ R([w]). This requires
∃C : �C ∈ Γ, [w] 1 �C , Ṽ  �C. Take C = ¬B.

�



I So, if 〈W̃ , R̃ , S̃,〉 is a model at all, then it is a filtration of
M = 〈W ,R ,S,〉.

I Is it a model (does it satisfy quasi-transitivity etc.)? Depends
on what ∼ is.

I Ideally, x and [x] are structurally similar, so that
quasi-transitivity etc. is preserved.

I So, each y ∼ x should be structurally similar to x.



Definition

A bisimulation between generalized IL-models
〈W ,R , {Sw : w ∈ W },〉 and 〈W ′,R ′, {S′w′ : w′ ∈ W ′},〉 is any
Z ⊆ W ×W ′, Z , ∅:

(at) if wZw′ then w  p ⇐⇒ w′  p;

(forth) if wZw′ and wRu, then there exists u′ ∈ R ′(w′) with uZu′

and for all V ′ ∈ S′w′(u
′) there is V ∈ Sw(u) such that for all

v ∈ V there is v′ ∈ V ′ with vZv′;

(back) if wZw′ and w′R ′u′, then there exists u ∈ R(w) such that
uZu′ and for all V ∈ Sw(u) there is V ′ ∈ S′w′(u

′) such that for
all v′ ∈ V ′ there is v ∈ V with vZv′.

I By induction on F , if x and y are bisimilar (w.r.t. any
bisimulation), x  F ⇐⇒ y  F .

I Union of bisimulations (over generalized models) is itself a
bisimulation (Vrgoč and Vuković, 2010).

I In particular, there is a largest (auto)bisimulation Z ⊆ W2.



I Denote by ∼ the largest bisimulation on W2.

(equivalently, denote x ∼ y if there is any bisimulation at all
which equates x and y)

Theorem

〈W̃ , R̃ , S̃,〉 is a model.

Proof.

We should check: (1) W̃ , ∅, (2) R̃−1 is well-founded, (3) R̃ is
transitive, (4) S̃[w] ⊆ R̃([w]) × (2R̃([w]) \ {∅}) (5) is quasi-reflexive
[u]S̃[w]{[u]}, (6) quasi-transitive [u]S̃[w]{[vi] | i ∈ I} and
[vi]S̃[w]Zi ⇒ [u]S̃[w]

⋃
{Zi | i ∈ I}, (7) contains R̃ ∩ R̃([w])2

[w]R̃[u]R̃[v] implies [u]S̃[w]{[v]}, (8) is monotonous
[u]S̃[w]V ⇒ [u]S̃[w]V ′,V ⊆ V ′ �



Proof.
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⋃
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[u]S̃[w]V ⇒ [u]S̃[w]V ′,V ⊆ V ′.

(3). Assume [w]R[u]R[v]. Then (w.l.o.g.) wRu ∼ u′Rv. Now (back)
implies there is v′ ∈ R(u), v′ ∼ v. So wRuRv′, thus wRv′. Since
[w]R[u], there is A s.t. w 1 �¬A , u  �¬A . So, also v′  �¬A . But
then [w]R[v′]. Since v′ ∼ v, [w]R[v].
(7) Assume [w]R̃[u]R̃[v]. We already know [w]R̃[u] and [w]R̃[v].
Let w′ ∼ w, u′ ∼ u such that w′Ru′. Since u′ ∼ u, (back) implies
there is v′ ∼ v such that w′Ru′Rv′. So for arbitrary w′ ∼ w, u′ ∼ u
there is v′ s.t. u′Sw′{v′} and indeed [v′] ∈ {[v]}. �
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I Thus, if ∼ is the largest bisimulation on W2, then 〈W̃ , R̃ , S̃,〉
is a model, and a filtration.

We were trying to prove finite model property; is this a finite
model?

I Each R̃-transition eliminates at least one ^-formula from Γ; so
height is finite.

I Still, branching factor might be infinite.



Definition

A n-bisimulation between IL-models 〈W ,R , {Sw : w ∈ W },〉 and
〈W ′,R ′, {S′w′ : w′ ∈ W ′},〉 is any sequence
Zn ⊆ · · · ⊆ Z0 ⊆ W ×W ′:

(at) if wZ0w′ then w  p ⇐⇒ w′  p;

(forth) if wZnw′ and wRu, then there exists u′ ∈ R ′(w′) with
uZn−1u′ and for all V ′ ∈ S′w′(u

′) there is V ∈ Sw(u) such that
for all v ∈ V there is v′ ∈ V ′ with vZn−1v′;

(back) if wZnw′ and w′R ′u′, then there exists u ∈ R(w) such that
uZn−1u′ and for all V ∈ Sw(u) there is V ′ ∈ S′w′(u

′) such that
for all v′ ∈ V ′ there is v ∈ V with vZn−1v′.

I Since height ofM is bounded by |Γ|, worlds are |Γ|-bisimilar iff
bisimilar.



I Put u ≡n v if u and v agree on all formulas with at most n
nested modalities.

I From now on, assume Prop := Prop ∩ Γ.
I Now there are only finitely many formulas of modal depth up

to |Γ| (finitely many up to local equivalence).
I Denote Thn w the set of all formulas F with modal depth up to
|Γ| and w  F .



Lemma

u ∼n v ⇐⇒ u ≡n v.

Proof.

⇒ Induction on F .

⇐ Induction on n. Step: assume (forth) doesn’t hold.
Then there is u ∈ R(w):

(∀u′ ∼n−1 u, u′ ∈ R(w′))(∃V ′(u′) ∈ Sw′(u′))(∀V ∈ Sw(u))

(∃v(u′,V) ∈ V)(∀v′ ∈ V ′(u′))v(u′,V) /n−1 v′.

Put BV :=
∧

u′∼n−1u,u′∈R(w′) Thn−1 v(u′,V). Put
B :=

∧
V∈Sw (u) ¬BV . For all u′ ∼ u, we have V ′(u′)  B

(because v(u′,V) /n−1 v′).
Let A := Thn−1 u. Now w′  A B B. Since w ≡n w′, then
w  A B B. Contradiction.

�



I Denote N = M̃.
I For x, y ∈ N , we now have x ∼ y ⇐⇒ x ∼|Γ| y ⇐⇒ x ≡|Γ| y.
I There are obviously only finitely many worlds inM/ ≡|Γ|.

I Since ≡|Γ| = ∼|Γ|, Ñ (that is, ˜̃
M) has only finitely many worlds.

I Thus we have FMP for IL.



Extending to ILX

I To prove FMP, given ILX that is complete w.r.t. class of
Veltman frames that satisfy property C, we need to fill in the
following:

1. What is the (generalized) frame condition G of X?
2. Is ILX complete w.r.t. to the class of G-frames?
3. Does M̃ have G ifM has G?

I For popular choices of X (except for W, W∗), 1 is known; and 2
usually reduces to completeness w.r.t. C (for each VM take
the natural GVM, i.e. uSwv ⇒ uSw{v}).



Logic ILM0

I ILM0 is IL + A B B → ^A ∧ �C B B ∧ �C.
I Frame condition (M0):

wRuRxSwvRz ⇒ uRz.

I Frame condition (M0)gen:

wRuRxSwV ⇒ (∃V ′ ⊆ V)(uSW V ′ & R(V ′) ⊆ R(u)).

I For each VM with (M0), there is a natural GVM (for xSwy,
xSW {y}) with (M0)gen.

I Remains to prove M̃ preserves (M0)gen.



Theorem

IfM has property (M0)gen, then M̃ has property (M0)gen.

Proof.

Let [w]R[u]R[x]S[w]Ṽ . Fix w′ ∈ [w], u′ ∈ [u]. By bisimilarity, there
is x′ ∼ x, w′Ru′Rx′.
Since [x]S[w]Ṽ , there is V(w′, u′) such that x′Sw′V(w′, u′) and
˜V(w′, u′) ⊆ Ṽ . By (M0), there is V ′(w′, u′) ⊆ V(w′, u′) such that

R(V ′(w′, u′)) ⊆ R(u′).
Choose such V ′(w′, u′) for w′ ∈ [w], u′ ∈ [u]; V ′ =

⋃
V ′(w′, u′).

To show [u]S[w]Ṽ ′, it remains to show R(V ′) ⊆ R([u]). Take
[v] ∈ V ′ and any [z] ∈ R([v]), w.l.o.g. we have vRz. By definition,
v ∼ v′ ∈ V ′(w′, u′) for some v′,w′ ∼ w, u′ ∼ u. Since v ∼ v′, v′Rz′

for some z′ ∼ z. We had R(V ′(w′, u′)) ⊆ R(u′).
So, z′ ∈ R(u′). To show [z] ∈ R([u]), there should be a formula C,
[u]  ^C, [z] 1 ^C. Take such C from [v]R[z].
Since v ∼ v′, v′  ^C and R(V ′(w′, u′)) ⊆ R(u′), we have
u′  ^C. �



Logic ILW

I ILW is IL + A B B → A B B ∧ �¬A .
I Frame condition (W):

Sw ◦ R is reverse well-founded for each w
I Frame condition (W)gen?

(∀w ∈ W)(∀X ⊆ R(w))(∀Z ⊆ S−1
w (X),Z , ∅)(∀z ∈ Z)

(∃V ⊆ X)
(
zSwV & (∀v ∈ V)(R(v) ∩ Z = ∅)

)
.

I (∀Z ⊆ S−1
w (X) is: for all Z such that for all z ∈ Z , zSwX )

I (Interestingly, equivalent after replacing (∀z ∈ Z) with
(∃z ∈ Z); occasionally useful.)



Logic ILW∗

I ILW∗ is IL + A B B → B ∧ �C B B ∧ �C ∧ �¬A .
I ILW∗ = ILWM0.
I Frame condition (W∗)gen?
I Each ILW∗-frame is ILW-frame (ILWM0 ⊇ ILW) and

ILM0-frame (ILWM0 ⊇ ILM0).
I Conversely, if F is both an ILW-frame and an ILM0-frame,

then it is an ILWM0-frame (induction on proof length).
I So, the frame condition is:

(W)gen and (M0)gen.
I If ILW∗ 0 F , there is a ILM0-, ILW-VMM, w ∈ M, s.t. w 1 F .

Then there is a natural GVM N with similar properties. Then
Ñ is an ILM0-, ILW-GVM, and so an ILW∗-GVM.



Complexity

I Given X, what is comp. complexity of {F | ILX ` F}?
I Since GL ⊆ IL, at least PSPACE for any natural choice of X.
I The only (?) known result: IL0 is PSPACE-hard.

I Our goals:
I IL is in PSPACE;
I ILW is in PSPACE.

I (corollary: both are PSPACE-complete)



Complexity (2)

I Let F be any non-theorem of ILX. By completeness, there is
M, w ∈ M s.t. w 1 F .

1. Show thatM can be transformed to a certain modelMf with
some desirable properties:
I accessibility relation (R) is a tree;
I polynomial height;
I polynomial branching factor;
I S-relations should be “factorized”.

2. Show that there is an algorithm that verifies the existence of all
models with such properties. For ILW, do additional
(polynomially large) bookkeeping to ensure there are no
R ◦ Sw -loops.
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