Decidability of some interpretability logics

Luka Mikec¹ Tin Perkov² Mladen Vuković²

¹University of Rijeka, Croatia

²University of Zagreb, Croatia

Barcelona, 2017

*ロ * * @ * * ミ * * ミ * ミ * シ * *

Interpretability logic

- ► Intepretability logics have a binary modal operator ▷.
- Basic interpretability logic IL:

classically valid formulas (in the new language, \Box , \diamond , \triangleright); K $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$; Löb $\Box(\Box A \rightarrow A) \rightarrow \Box A$; J1 $\Box(A \rightarrow B) \rightarrow A \triangleright B$; J2 $(A \triangleright B) \land (B \triangleright C) \rightarrow A \triangleright C$; J3 $(A \triangleright C) \land (B \triangleright C) \rightarrow A \lor B \triangleright C$; J4 $A \triangleright B \rightarrow (\diamond A \rightarrow \diamond B)$; J5 $\diamond A \triangleright A$. • rules: modus ponens and necessitation $A/\Box A$.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨト ヨヨ のへぐ

(parentheses priority: $\neg, \Box, \diamondsuit; \land, \lor; \succ; \rightarrow, \leftrightarrow$)

Models

- ► Semantics: extend the usual relational (Kripke) model.
- ▶ Veltman model: $\mathcal{M} = \langle W, R, \{S_w : w \in W\}, V \rangle$, where:
 - 1. $W \neq \emptyset$;
 - 2. R^{-1} is well-founded (no $x_0 R x_1 R x_2 R \dots$ chains);
 - 3. R is transitive;
 - S_w ⊆ R(w)² is reflexive, transitive, contains R ∩ R(w)² (wRuRv implies uS_wv);
 - 5. $V : \operatorname{Prop} \to \mathcal{P}(W)$.
- ▶ Truth of a formula $F \triangleright G$ ("*F* interprets *G*") in a world $w \in \mathcal{M}$:

 $w \Vdash F \triangleright G \quad :\Leftrightarrow \quad \forall x \in R(w) : \quad x \Vdash F \Rightarrow \exists y \in S_w(x) : \quad y \Vdash G.$

- ► **IL**-frame (Veltman frame) is a triple $\mathcal{F} = \langle W, R, \{S_w : w \in W\} \rangle$.
- We have:

$$\mathsf{IL} \vdash F \iff \forall \mathcal{F} : \mathcal{F} \models F.$$

Frame conditions

Some extensions of IL:

ILM_0	$IL + A \triangleright B \to \Diamond A \land \Box C \triangleright B \land \Box C$
ILW	$IL + A \triangleright B \to A \triangleright B \land \Box \neg A$
ILW*	$IL + A \triangleright B \to B \land \Box C \triangleright B \land \Box C \land \Box \neg A$

- ► $ILW^* = ILM_0W \subseteq IL(AII)$
- ► These logics are complete w.r.t. certain classes of frames:

$$(M_0) \qquad wRuRxS_wv \Rightarrow R(v) \subseteq R(u);$$

- (*W*) $S_w \circ R$ is reverse well-founded for each *w*;
- (W^*) (M_0) and (W).
- ► ILW-frame is IL-frame that satisfies (*W*) etc.

Proving decidability

- Let's focus on IL.
- ► FMP: if $x \Vdash F$, then there is finite \mathcal{M} and $x' \in \mathcal{M}$ s.t. $x' \Vdash F$.
- Decision procedure: simultaneously do two things:
 - Enumerate the (countable) set of all IL-proofs.
 - Enumerate the (countable) set of (descriptions of) finite IL-models.
- The usual way of proving FMP is by filtrations.

Filtrations on IL-models

- Let Γ contain A, closed under subformulas.
- Assume ~ is an equivalence relation on W, ~ $\subseteq \equiv_{\Gamma}$.
- For any $V \subseteq W$, define $\widetilde{V} = \{ [v] \mid v \in V \}$.
- We define the rest of \widetilde{M} as follows.
- ► $\widetilde{R} = \{([w], [u]) \mid wRu, \exists \Box C \in \Gamma : w \nvDash \Box C, u \Vdash \Box C\}.$
- ► $[u]\widetilde{S}_{[w]}[v]$ if and only if $[u], [v] \in \widetilde{R}([w])$, and for <u>all/some</u> $w' \in [w]$ and <u>some</u> $u' \in [u]$ such that w'Ru' we have $u'S_{w'}v'$ for some $v' \sim v$.
- Define \Vdash so that x and [x] agree on variables in Γ .
- We'll write R, S instead of \widetilde{R} , \widetilde{S} when context allows.
- ► Problem: we lose transitivity of $S_{[w]}$. $w \to \{u \rightsquigarrow v_1 \sim v_2 \rightsquigarrow z\}, [w] \to \{[u] \rightsquigarrow [v] \rightsquigarrow [z]\}$

Filtrations on IL-models (2)

- Let Γ contain A, closed under subformulas (and some more technical conditions).
- Assume ~ is an equivalence relation on W, ~ $\subseteq \equiv_{\Gamma}$.
- For any $V \subseteq W$, define $\widetilde{V} = \{ [v] \mid v \in V \}$.
- We define the rest of \widetilde{M} as follows.
- ► $\widetilde{R} = \{([w], [u]) \mid wRu, \exists \Box C \in \Gamma : w \nvDash \Box C, u \Vdash \Box C\}.$
- ► $[u]\widetilde{S}_{[w]}[v]$ if and only if $[u], [v] \in \widetilde{R}([w])$, and for <u>some/all</u> $w' \in [w]$ and <u>all</u> $u' \in [u]$ such that w'Ru' we have $u'S_{w'}v'$ for some $v' \sim v$.
- Define \Vdash so that x and [x] agree on variables in Γ .
- We'll write R, S instead of \widetilde{R} , \widetilde{S} when context allows.
- ▶ Problem: we lose S_w -successors that don't agree enough. $w \rightarrow \{v_1[X] \iff u_1 \sim u_2 \iff v_2[\neg X]\},\$ $[w] \rightarrow \{[u] \iff ?$

Generalized models

- In the last example, ideally $[u] \rightsquigarrow \{v_1, v_2\}$.
- ► Generalized IL-models (generalized Veltman models).
- $\mathcal{M} = \langle W, R, \{S_w : w \in W\}, V \rangle$, where:
 - 1. $W \neq \emptyset$;
 - 2. R^{-1} is well-founded (no $x_0 R x_1 R x_2 R ...$ chains);
 - 3. R is transitive;
 - 4. $S_w \subseteq R(w) \times (2^{R(w)} \setminus \{\emptyset\})$ is:
 - quasi-reflexive $uS_w\{u\}$;
 - quasi-transitive $uS_w\{v_i \mid i \in I\}$ and $v_iS_wZ_i \Rightarrow uS_w \bigcup \{Z_i \mid i \in I\};$
 - contains $R \cap R(w)^2$ wRuRv implies $uS_w\{v\}$;
 - is monotonous $uS_wV \Rightarrow uS_wV', V \subseteq V'$
 - 5. $V : Prop \rightarrow \mathcal{P}(W)$.
- ► Truth of a formula $F \triangleright G$ ("*F* interprets *G*") in a world $x \in \mathcal{M}$:

 $w \Vdash F \triangleright G \quad :\Leftrightarrow \quad \forall x \in R(w) : \quad x \Vdash F \Rightarrow \exists V \in S_w(x) : \quad V \Vdash G.$

• $V \Vdash G$ stands for $v \Vdash G$ for all $v \in V$.

Filtration property

•
$$\widetilde{M} = \langle \widetilde{W}, \widetilde{R}, \widetilde{S}_{[w]}, \Vdash \rangle.$$

- $\widetilde{W} = \{[w] \mid w \in W\}.$
- $\bullet \ \widetilde{R} = \{([w], [u]) \mid wRu, \exists \Box C \in \Gamma : w \nvDash \Box C, u \Vdash \Box C\}.$
- ► $[u]\widetilde{S}_{[w]}\widetilde{V}$ if and only if $\{[u]\}, \widetilde{V} \subseteq R([w])$, and for all $w' \in [w]$ and all $u' \in [u]$ such that w'Ru' we have $u'S_{w'}V(w', u')$ for some $V(\widetilde{w'}, u') \subseteq \widetilde{V}$.
- ► Forcing relation compatible with *M*.
- $w \to \{\{v_1[X]\} \nleftrightarrow u_1 \sim u_2 \rightsquigarrow \{v_2[\neg X]\}\}, \\ [w] \to \{[u] \rightsquigarrow \{[v_1], [v_2]\}\}$
- ► Assume $\langle \widetilde{W}, \widetilde{R}, \widetilde{S}, \Vdash \rangle$ is a generalized model (depends on ~).
- Do we have $w \Vdash F \iff [w] \Vdash F$?

• Denote $[A]_w = \{x \in R[w] \mid x \Vdash A\}.$

Lemma

Let $w \nvDash A \triangleright B$. There is a maximal $u \in [A]_w$ such that

 $uS_wV \Rightarrow V \nvDash B.$

We also have $u \nvDash \diamond A, B$.

Proof.

Existence: definition of \mathbb{H} . Maximality: *R* is conversely well-founded. Since $uS_w\{u\}$, obviously $u \nvDash B$. Suppose $u \Vdash \Diamond A$. Then $uRv \Vdash A$. Since $uS_w\{v\}$, by quasi-transitivity we have $S_w(v) \subseteq S_w(u)$. Contradiction with maximality of *u*.

Theorem

 $w \Vdash F \iff [w] \Vdash F.$

Proof.

Induction on F.

 $\begin{array}{l} \Leftarrow \quad \text{Assume } w \nvDash A \rhd B. \text{ Lemma: there is a maximal } u \in [A]_w \\ \text{ such that } uS_w V \Rightarrow V \nvDash B; \text{ and } u \nvDash \diamond A. \\ \text{ We have } w \Vdash \diamond A, \text{ and since } u \nvDash \diamond A, [w]R[u]. \\ \text{ Let } \widetilde{V} \text{ arbitrary s.t. } [u]S_{[w]}\widetilde{V}. \text{ In particular, } uS_w V' \text{ for some } \\ \widetilde{V'} \subseteq \widetilde{V}. \text{ Since } V' \nvDash B, \text{ by IH, } \widetilde{V'} \nvDash B. \text{ Therefore } \widetilde{V} \nvDash B. \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

$$w \Vdash F \iff [w] \Vdash F.$$

Proof.

Induction on F.

 \Rightarrow Assume $w \Vdash A \triangleright B$. Assume $[w]R[u] \Vdash A$. We construct V s.t. $[w]R[u]S_{[w]}V \Vdash B.$ Let $w' \in [w], u' \in [u], wRu$. Since $w' \sim w, w' \Vdash A \triangleright B$, therefore for some V(w', u'), $u'S_{w'}V(w', u') \Vdash B$. For each point $v \in V(w', u')$, put $Z_v = \{v\}$ if $v \nvDash \Diamond B$. Otherwise, $Z_v = \{m\}$, where *m* is arbitrary maximal world from $[B]_{v}$. Now, $u'S_{w}Z_{v}$, so by quasi-transitivity, $vS_{w} \bigcup_{v} Z_{v} \Vdash \Box \neg B$. Put $V := \bigcup_{w' \in [w], u' \in [u], w' R u', v \in V(w', u')} Z_v$. By IH, $V \Vdash B, \Box \neg B$. It remains to show that $V \subseteq R([w])$. This requires $\exists C : \Box C \in \Gamma, [w] \nvDash \Box C, V \Vdash \Box C.$ Take $C = \neg B$.

П

- So, if (W, R, S, ⊩) is a model at all, then it is a filtration of M = (W, R, S, ⊩).
- Is it a model (does it satisfy quasi-transitivity etc.)? Depends on what ~ is.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ めのぐ

- Ideally, x and [x] are structurally similar, so that quasi-transitivity etc. is preserved.
- So, each $y \sim x$ should be structurally similar to x.

Definition

A bisimulation between generalized IL-models $\langle W, R, \{S_w : w \in W\}, \Vdash \rangle$ and $\langle W', R', \{S'_{w'} : w' \in W'\}, \Vdash \rangle$ is any $Z \subseteq W \times W', Z \neq \emptyset$:

(at) if wZw' then $w \Vdash p \iff w' \Vdash p$;

(forth) if wZw' and wRu, then there exists $u' \in R'(w')$ with uZu'and for all $V' \in S'_{w'}(u')$ there is $V \in S_w(u)$ such that for all $v \in V$ there is $v' \in V'$ with vZv';

(back) if wZw' and w'R'u', then there exists $u \in R(w)$ such that uZu' and for all $V \in S_w(u)$ there is $V' \in S'_{w'}(u')$ such that for all $v' \in V'$ there is $v \in V$ with vZv'.

- By induction on *F*, if *x* and *y* are bisimilar (w.r.t. any bisimulation), *x* ⊩ *F* ⇔ *y* ⊩ *F*.
- Union of bisimulations (over generalized models) is itself a bisimulation (*Vrgoč and Vuković, 2010*).
- ► In particular, there is a largest (auto)bisimulation $Z \subseteq W^2$.

Denote by ~ the largest bisimulation on W².

(equivalently, denote $x \sim y$ if there is any bisimulation at all which equates x and y)

Theorem

 $\langle \widetilde{W}, \widetilde{R}, \widetilde{S}, \mathbb{H} \rangle$ is a model.

Proof.

We should check: (1) $\widetilde{W} \neq \emptyset$, (2) \widetilde{R}^{-1} is well-founded, (3) \widetilde{R} is transitive, (4) $\widetilde{S}_{[w]} \subseteq \widetilde{R}([w]) \times (2^{\widetilde{R}([w])} \setminus \{\emptyset\})$ (5) is quasi-reflexive $[u]\widetilde{S}_{[w]}\{[u]\}$, (6) quasi-transitive $[u]\widetilde{S}_{[w]}\{[v_i] \mid i \in I\}$ and $[v_i]\widetilde{S}_{[w]}Z_i \Rightarrow [u]\widetilde{S}_{[w]} \cup \{Z_i \mid i \in I\}$, (7) contains $\widetilde{R} \cap \widetilde{R}([w])^2$ $[w]\widetilde{R}[u]\widetilde{R}[v]$ implies $[u]\widetilde{S}_{[w]}\{[v]\}$, (8) is monotonous $[u]\widetilde{S}_{[w]}V \Rightarrow [u]\widetilde{S}_{[w]}V', V \subseteq V'$

Proof.

We should check: (1) $\widetilde{W} \neq \emptyset$, (2) \widetilde{R}^{-1} is well-founded, (3) \widetilde{R} is transitive, (4) $\widetilde{S}_{[w]} \subseteq \widetilde{R}([w]) \times 2^{\widetilde{R}([w])}$ (5) is quasi-reflexive $[u]\widetilde{S}_{[w]}\{[u]\}$, (6) quasi-transitive $[u]\widetilde{S}_{[w]}\{[v_i] \mid i \in I\}$ and $[v_i]\widetilde{S}_{[w]}Z_i \Rightarrow [u]\widetilde{S}_{[w]} \cup \{Z_i \mid i \in I\}$, (7) contains $\widetilde{R} \cap \widetilde{R}([w])^2$ $[w]\widetilde{R}[u]\widetilde{R}[v]$ implies $[u]\widetilde{S}_{[w]}\{[v]\}$, (8) is monotonous $[u]\widetilde{S}_{[w]}V \Rightarrow [u]\widetilde{S}_{[w]}V', V \subseteq V'$.

Proof.

We should check: (1) $\widetilde{W} \neq \emptyset$, (2) \widetilde{R}^{-1} is well-founded, (3) \widetilde{R} is transitive, (4) $\widetilde{S}_{[w]} \subseteq \widetilde{R}([w]) \times 2^{R([w])}$ (5) is quasi-reflexive $[u]\widetilde{S}_{[w]}\{[u]\}, (6)$ quasi-transitive $[u]\widetilde{S}_{[w]}\{[v_i] \mid i \in I\}$ and $[v_i]\widetilde{S}_{[w]}Z_i \Rightarrow [u]\widetilde{S}_{[w]} \cup \{Z_i \mid i \in I\}, (7) \text{ contains } \widetilde{R} \cap \widetilde{R}([w])^2$ $[w]\widetilde{R}[u]\widetilde{R}[v]$ implies $[u]\widetilde{S}_{[w]}\{[v]\}, (8)$ is monotonous $[u]\widetilde{S}_{[w]}V \Rightarrow [u]\widetilde{S}_{[w]}V', V \subseteq V'.$ (3). Assume [w]R[u]R[v]. Then (w.l.o.g.) $wRu \sim u'Rv$. Now (back) implies there is $v' \in R(u)$, $v' \sim v$. So wRuRv', thus wRv'. Since [w]R[u], there is A s.t. $w \nvDash \Box \neg A$, $u \Vdash \Box \neg A$. So, also $v' \Vdash \Box \neg A$. But then [w]R[v']. Since $v' \sim v$, [w]R[v].

Proof.

We should check: (1) $\widetilde{W} \neq \emptyset$, (2) \widetilde{R}^{-1} is well-founded, (3) \widetilde{R} is transitive, (4) $\widetilde{S}_{[w]} \subseteq \widetilde{R}([w]) \times 2^{R([w])}$ (5) is quasi-reflexive $[u]\widetilde{S}_{[w]}\{[u]\}, (6)$ quasi-transitive $[u]\widetilde{S}_{[w]}\{[v_i] \mid i \in I\}$ and $[v_i]\widetilde{S}_{[w]}Z_i \Rightarrow [u]\widetilde{S}_{[w]} \cup \{Z_i \mid i \in I\}, (7) \text{ contains } \widetilde{R} \cap \widetilde{R}([w])^2$ $[w]\widetilde{R}[u]\widetilde{R}[v]$ implies $[u]\widetilde{S}_{[w]}\{[v]\}, (8)$ is monotonous $[u]\widetilde{S}_{[w]}V \Rightarrow [u]\widetilde{S}_{[w]}V', V \subseteq V'.$ (3). Assume [w]R[u]R[v]. Then (w.l.o.g.) $wRu \sim u'Rv$. Now (back) implies there is $v' \in R(u)$, $v' \sim v$. So wRuRv', thus wRv'. Since [w]R[u], there is A s.t. $w \nvDash \Box \neg A$, $u \Vdash \Box \neg A$. So, also $v' \Vdash \Box \neg A$. But then [w]R[v']. Since $v' \sim v$, [w]R[v]. (7) Assume [w]R[u]R[v]. We already know [w]R[u] and [w]R[v]. Let $w' \sim w, u' \sim u$ such that w'Ru'. Since $u' \sim u$, (back) implies there is $v' \sim v$ such that w' Ru' Rv'. So for arbitrary $w' \sim w, u' \sim u$ there is v' s.t. $u'S_{w'}\{v'\}$ and indeed $[v'] \in \{[v]\}$. П

► Thus, if ~ is the largest bisimulation on W^2 , then $\langle \widetilde{W}, \widetilde{R}, \widetilde{S}, \mathbb{H} \rangle$ is a model, and a filtration.

We were trying to prove finite model property; is this a finite model?

► Each R
-transition eliminates at least one ◊-formula from Γ; so height is finite.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ めのぐ

► Still, branching factor might be infinite.

Definition

A *n*-bisimulation between **IL**-models $\langle W, R, \{S_w : w \in W\}, \Vdash \rangle$ and $\langle W', R', \{S'_{w'} : w' \in W'\}, \Vdash \rangle$ is any sequence $Z_n \subseteq \cdots \subseteq Z_0 \subseteq W \times W'$:

(at) if wZ_0w' then $w \Vdash p \iff w' \Vdash p$;

(forth) if wZ_nw' and wRu, then there exists $u' \in R'(w')$ with $uZ_{n-1}u'$ and for all $V' \in S'_{w'}(u')$ there is $V \in S_w(u)$ such that for all $v \in V$ there is $v' \in V'$ with $vZ_{n-1}v'$;

(back) if wZ_nw' and w'R'u', then there exists $u \in R(w)$ such that $uZ_{n-1}u'$ and for all $V \in S_w(u)$ there is $V' \in S'_{w'}(u')$ such that for all $v' \in V'$ there is $v \in V$ with $vZ_{n-1}v'$.

► Since height of *M* is bounded by |Γ|, worlds are |Γ|-bisimilar iff bisimilar.

- Put u ≡_n v if u and v agree on all formulas with at most n nested modalities.
- From now on, assume $Prop := Prop \cap \Gamma$.
- ► Now there are only finitely many formulas of modal depth up to |Γ| (finitely many up to local equivalence).
- ► Denote Th_n w the set of all formulas F with modal depth up to $|\Gamma|$ and $w \Vdash F$.

Lemma

 $u \sim_n v \iff u \equiv_n v.$

Proof.

- \Rightarrow Induction on *F*.
- ← Induction on *n*. Step: assume (forth) doesn't hold. Then there is $u \in R(w)$:

 $(\forall u' \sim_{n-1} u, u' \in R(w'))(\exists V'(u') \in S_{w'}(u'))(\forall V \in S_w(u))$ $(\exists v(u', V) \in V)(\forall v' \in V'(u'))v(u', V) \not\sim_{n-1} v'.$

Put $B_V := \bigwedge_{u' \sim_{n-1} u, u' \in R(w')} Th_{n-1} v(u', V)$. Put $B := \bigwedge_{V \in S_w(u)} \neg B_V$. For all $u' \sim u$, we have $V'(u') \Vdash B$ (because $v(u', V) \not\sim_{n-1} v'$). Let $A := Th_{n-1} u$. Now $w' \Vdash A \triangleright B$. Since $w \equiv_n w'$, then $w \Vdash A \triangleright B$. Contradiction.

◇⊘◇ 単則 《Ⅲ》 《Ⅲ》 《□》

- Denote $\mathcal{N} = \widetilde{\mathcal{M}}$.
- ► For $x, y \in N$, we now have $x \sim y \iff x \sim_{|\Gamma|} y \iff x \equiv_{|\Gamma|} y$.
- There are obviously only finitely many worlds in $\mathcal{M} / \equiv_{|\Gamma|}$.
- Since $\equiv_{|\Gamma|} = \sim_{|\Gamma|}, \widetilde{\mathcal{N}}$ (that is, $\widetilde{\widetilde{\mathcal{M}}}$) has only finitely many worlds.
- ► Thus we have FMP for IL.

Extending to ILX

- To prove FMP, given ILX that is complete w.r.t. class of Veltman frames that satisfy property C, we need to fill in the following:
 - 1. What is the (generalized) frame condition \mathcal{G} of X?
 - 2. Is ILX complete w.r.t. to the class of G-frames?
 - 3. Does \mathcal{M} have \mathcal{G} if \mathcal{M} has \mathcal{G} ?
- For popular choices of X (except for W, W*), 1 is known; and 2 usually reduces to completeness w.r.t. C (for each VM take the natural GVM, i.e. uS_wv ⇒ uS_w{v}).

$Logic \ ILM_0$

- \mathbf{ILM}_0 is $\mathbf{IL} + A \triangleright B \rightarrow \Diamond A \land \Box C \triangleright B \land \Box C$.
- ► Frame condition (*M*₀):

 $wRuRxS_wvRz \Rightarrow uRz.$

► Frame condition (*M*₀)_{gen}:

 $wRuRxS_wV \Rightarrow (\exists V' \subseteq V)(uS_WV' \& R(V') \subseteq R(u)).$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ めのぐ

- For each VM with (M₀), there is a natural GVM (for xS_wy, xS_W{y}) with (M₀)_{gen}.
- Remains to prove $\widetilde{\mathcal{M}}$ preserves $(M_0)_{gen}$.

Theorem

If \mathcal{M} has property $(M_0)_{gen}$, then $\widetilde{\mathcal{M}}$ has property $(M_0)_{gen}$.

Proof.

Let $[w]R[u]R[x]S_{[w]}V$. Fix $w' \in [w], u' \in [u]$. By bisimilarity, there is $x' \sim x$, w' Ru' Rx'. Since $[x]S_{[w]}V$, there is V(w', u') such that $x'S_{w'}V(w', u')$ and $V(\widetilde{w'}, u') \subseteq \widetilde{V}$. By (M_0) , there is $V'(w', u') \subseteq V(w', u')$ such that $R(V'(w', u')) \subseteq R(u').$ Choose such V'(w', u') for $w' \in [w], u' \in [u]; V' = \bigcup V'(w', u')$. To show $[u]S_{[w]}V'$, it remains to show $R(V') \subseteq R([u])$. Take $[v] \in V'$ and any $[z] \in R([v])$, w.l.o.g. we have vRz. By definition, $v \sim v' \in V'(w', u')$ for some $v', w' \sim w, u' \sim u$. Since $v \sim v', v'Rz'$ for some $z' \sim z$. We had $R(V'(w', u')) \subseteq R(u')$. So, $z' \in R(u')$. To show $[z] \in R([u])$, there should be a formula C, $[u] \Vdash \Diamond C, [z] \nvDash \Diamond C$. Take such C from [v]R[z]. Since $v \sim v'$, $v' \Vdash \Diamond C$ and $R(V'(w', u')) \subseteq R(u')$, we have *u*′ ⊩ ◊*C*.

Logic ILW

- ILW is IL + $A \triangleright B \rightarrow A \triangleright B \land \Box \neg A$.
- ► Frame condition (W):

 $S_w \circ R$ is reverse well-founded for each w

Frame condition (W)_{gen}?

 $(\forall w \in W) (\forall X \subseteq R(w)) (\forall Z \subseteq S_w^{-1}(X), Z \neq \emptyset) (\forall z \in Z)$ $(\exists V \subseteq X) (zS_w V \& (\forall v \in V) (R(v) \cap Z = \emptyset)).$

- $(\forall Z \subseteq S_w^{-1}(X) \text{ is: for all } Z \text{ such that for all } z \in Z, zS_wX)$
- (Interestingly, equivalent after replacing (∀z ∈ Z) with (∃z ∈ Z); occasionally useful.)

Logic ILW*

- ILW* is IL + $A \triangleright B \rightarrow B \land \Box C \triangleright B \land \Box C \land \Box \neg A$.
- ► ILW^{*} = ILWM₀.
- ► Frame condition (*W*^{*})_{gen}?
- ► Each ILW*-frame is ILW-frame (ILWM₀ \supseteq ILW) and ILM₀-frame (ILWM₀ \supseteq ILM₀).
- ► Conversely, if *F* is both an ILW-frame and an ILM₀-frame, then it is an ILWM₀-frame (induction on proof length).
- ► So, the frame condition is:

 $(W)_{gen}$ and $(M_0)_{gen}$.

▶ If IL $W^* \nvDash F$, there is a ILM₀-, ILW-VM \mathcal{M} , $w \in \mathcal{M}$, s.t. $w \nvDash F$. Then there is a natural GVM \mathcal{N} with similar properties. Then $\widetilde{\mathcal{N}}$ is an ILM₀-, ILW-GVM, and so an ILW^{*}-GVM.

Complexity

- Given X, what is comp. complexity of $\{F \mid ILX \vdash F\}$?
- Since $\mathbf{GL} \subseteq \mathbf{IL}$, at least PSPACE for any natural choice of X.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨト ヨヨ のへぐ

- ► The only (?) known result: **IL**₀ is PSPACE-hard.
- Our goals:
 - ► IL is in PSPACE;
 - ILW is in PSPACE.
- ► (corollary: both are PSPACE-complete)

Complexity (2)

- ► Let *F* be any non-theorem of ILX. By completeness, there is $\mathcal{M}, w \in \mathcal{M}$ s.t. $w \nvDash F$.
 - 1. Show that \mathcal{M} can be transformed to a certain model \mathcal{M}^{f} with some desirable properties:
 - ► accessibility relation (*R*) is a tree;
 - polynomial height;
 - polynomial branching factor;
 - ► S-relations should be "factorized".
 - 2. Show that there is an algorithm that verifies the existence of all models with such properties. For **IL**W, do additional (polynomially large) bookkeeping to ensure there are no $R \circ S_w$ -loops.

Papers

- T. Perkov, M. Vuković. Filtrations of generalized Veltman models. Mathematical Logic Quarterly, 62, 412–419, 2016.
- L. Mikec, T. Perkov, M. Vuković. Decidability of interpretability logics **IL**M₀ and **IL**W[∗]. *Submitted*.
- (complexity paper work in progress)